Solaire Photovoltaïque : Chiffres Clés

Chiffres clés dans le monde du solaire photovoltaïque:

-Croissance de 35% par an en moyenne depuis 1998

-Capacité cumulée d’énergie photovoltaïque installée : 14 730 MWc

-Estimations pour 2010 : l’industrie photovoltaïque pourrait créer plus de 200 000 emplois dans l’Union Européenne et 10 fois plus à travers le monde -L’Allemagne dispose du premier parc mondial d’électricité photovoltaïque en 2008

-L’Europe représente la plus forte croissance de production d’énergie solaire

Chiffres clés en France :

-5ème pays le plus ensoleillé en Europe -8 800 installations raccordées au réseau électrique fin 2008 Au 31 décembre 2009 :

-Parc raccordé au réseau : 269 MW (progression de 54% du parc raccordé entre fin septembre 2009 et fin décembre 2009) -Production d’électricité sur une année : environ 280 GWh (= consommation électrique de 125 000 habitants)

-91% des installations photovoltaïques en service sont des installations de moins de 3kW (= 44% de la puissance installée)

-La file d’attente au raccordement : 3 438 MW -Depuis début novembre 2009, une bulle spéculative sans précédent dans le secteur du solaire photovoltaïque

-Dans la filière photovoltaïque, la création d’emplois « directs » a doublé en 2009, passant de 4 000 à 8 000

Solar Millennium AG – Company Statement

7 juillet 2009

(c)2009, Global Markets Direct.


Overview
Solar Millennium AG Company Statement
A joint statement by Mr. Christian Beltle, the Chairman and the Cheif Executive Officer, Mr. Thomas Meyer, the Chief Financial Officer and Dr. Henner Gladen, the Chief Technology Officer of Solar Millennium AG is given below. The statement has been taken from the company’s 2008 Annual Report.

We made it! In December 2008 Andasol 1, the world’s largest solar power plant, was connected to the grid. With this, we have managed to realize our vision and, together with our partners, carried out an idea that only existed in the heads of a few idealistic founding shareholders just a couple of years ago. With Andasol 1, Solar Millennium underscores its pioneering role in the field of solar-thermal power plants. This is something to be proud of.

The two sister projects Andasol 2 and 3 are under construction in the direct vicinity. While Andasol 2 will be connected to the grid towards the middle of the year, preparations have begun for Andasol 3. A major investor will soon be involved. In 2011, the power plant triad with an overall area of about 6 km2 will convert a total of more than 500 GWh of solar energy into sustainable electricity for up to 600,000 people. In doing so, up to 450,000 tons of carbon dioxide emissions will be saved over conventional coal power plants. Thus, we managed to make the vision come true that we had made our cause 10 years ago when founding the Company.

Against the background of globally rising energy demand in connection with scarcer resources, many decision-makers in politics and business have now realized that electricity from solar energy is one of the most important alternatives to the energy mix so far. The “Solar Plan” that came into being in 2008 under the French EU Council Presidency as part of the new Union for the Mediterranean is one of the best examples. Large-scale solar-thermal plants such as the hybrid power plant in Egypt, which our subsidiary Flagsol is equipping with a solar field, are the first flagship projects for a number of solar power plants that will form a line along the North African states bordering the Mediterranean and cover their own need for energy in addition to supplying Europe. Our experts are being consulted by many of the respective committees, thus making them the architects of a new transnational energy policy from the start.
However, solar energy is also experiencing a renaissance in the US, a country where parabolic trough power plants have reliably been generating electricity in the Californian desert for more than 20 years. At the end of the Bush administration, tax incentives for investment in solar energy, the so-called Investment Tax Credits, were extended for another eight years. Moreover, the state of California recently raised the benchmark for renewable energy generation that is fixed in the Renewable Portfolio Standards from 20% to 33% for 2020. Considering that president Barack Obama has announced massive investment in the establishment of renewable energy supply within the context of his stimulus plan providing for a total of nearly US$ 790 billion overall, it becomes clear why the US is believed to be the next boom market for solar-thermal power plants.

Solar Millennium has an excellent starting position in the US thanks to its involvement there for many years and its own branch in Berkeley, California. We have secured land for approximately 5,000 MW in power plant capacities within these regions, which feature the world’s best solar radiation conditions. Furthermore, Solar Millennium has been short-listed for the realization of approximately six power plants with a total capacity of 1,500 MW by American utilities. We expect to sign contracts for one to two projects with a total capacity of 250 MW to 500 MW as early as this year.

Other countries have likewise become aware of the vast economic and ecologic potential of solar-thermal power plants. In Israel, the United Arab Emirates and Morocco, tenders for solar-thermal power plants can now be made, and the Solar Millennium Group is of course involved. Italy and Greece determined their fixed feed-in tariffs last year. Australia, one of the most attractive regions in the world given its high level of direct normal radiation and its resources of free land, has also opened up to the large-scale solar-thermal power plant market despite its low energy prices.

According to a survey by the German Aerospace Center (DLR), electricity from most renewable energy sources will be cheaper than fossil fuels by 2025. Accordingly, renewable energy will have largely superseded fossil energy sources in the Mediterranean by the middle of this century. In 2050, the survey further reads, the output of solar-thermal power plants will be double the amount of wind, photovoltaics, biomass and geothermal power plants put together.

Consequently, the prospects are outstanding and, with a well-filled project pipeline in Spain and the US as well as the possibility of acquiring additional projects through tenders, our Company is excellently positioned in the expanding market for solar-thermal power plants. Solar Millennium also enjoys a distinguished reputation among suppliers as well as partners and customers as an expert in the planning and realization of top-quality solar-thermal power plants. As a mark of recognition for its contribution to sustainable energy supply, Solar Millennium AG was awarded the internationally-renowned Energy Globe Award in May 2008 in Brussels.

We are looking forward to the next few steps in this exciting growth sector and would like to thank our employees for their enormous commitment as well as our shareholders and investors for the confidence you have bestowed in us along this path.
Reblog this post [with Zemanta]

Turkey Is Getting Ready To Harvest Its Renewable Energy Potential.

When we talk about wind, solar and geothermal power, geographical conditions such as surface areas and sunny latitudes are very important. Turkey offers excellent conditions for all of these renewable energy sources. Its young population of 70 million – 61% are under the age of 35 – and its strategic location between Europe and the Middle East, add to Turkey’s potential for a leading green power nation.

As Turkey aims at taking its place among the top-ten biggest economies by 2050, an increase in its energy consumption is inevitable. Electricity demand has been growing with an annual rate of 6.5% since 2002, up to current levels of 198,000 GWh/y. Scenarios forecast a 6% growth rate until 2020, compared to growth rates of 1-3% in developed countries. However, Turkey’s growth of electricity supply barely matches its fast growth of demand. The country began experiencing shortages already, and power has become a more popular daily topic. Total installed capacity is at 42,000 MW, with foreign natural gas (48%), coal (29%) and hydro power (17%) providing the biggest shares of resources. So far, the share of renewable energy is close to 1% of the total installed capacity.

In 2006, the government passed a set of incentives to stimulate the renewable energy sector. The efforts successfully resulted in substantial increases in the wind power capacity to 433 MW in 2009 from 50 MW levels in 2006. From 2007 to 2008, the capacity almost quadrupled. Currently, there is additional 450 MW construction to be completed by the end of 2009. Roof-top solar panels, which are commonly used for water heating in the Mediterranean region, produce energy equivalent to almost 4800 GWh/y, however installed photovoltaic capacity is only 2 MW. Turkey is the 5th in the World in operating geothermal energy applications with equivalence of 1380 MW capacity used in direct district heating and tourism industry. Geothermal power production capacity is currently 30 MW. So far, only modest steps have been taken since the government has not set clear targets or competitive incentives on new technologies yet.

According to studies, Turkey has around 48,000 MW of wind power potential (see REPA) with speeds higher than 7 m/s. The geothermal energy potential of the country is around 31,500 MW -one of the highest in Europe- which could be used for both heating and electricity production purposes. As Turkey is the second sunniest country in Europe after Spain, it can draw 380,000 GWh/y of solar energy – almost double the total electricity consumption of the country in 2008.

Turkey has signed the UNFCCC Kyoto Protocol this year, and the country is going to be assigned a reduction of greenhouse gases for the post-2012-phase, which will eventually turn into clearer targets in its renewable energy sector.

It is expected that the Parliamentary General Assembly will pass an amendment to “Renewable Energy Resources Law 4628″ in July, effectively setting a purchase price, or feed-in-tariff, for renewable energy. While the renewable energy can be sold to the public at rates shown in Graph-1, the prices are still not competitive enough to make solar favorable against natural gas. The tariffs for photovoltaics are set at EUR 0.25/kWh only for the first 10 years of operation, and then decrease to EUR 0.20 for the next 10 years.

While rates in other European countries are much more attractive (see Graph-2), particularly in countries like Greece and Italy trying to catch up to their western neighbors, it is the first serious step towards setting a long-term purchase price incentive for renewable energy producers. The mechanism is expected to increase developments in the Turkish renewable energy sector, and investors are already beginning to position themselves in the market.

There are still many unclear issues regarding regulations and their execution. While this problem is not unique to Turkey, the country’s transmission grid needs extensive upgrades. Despite this and other much needed developments, EU directives, feed-in-tariffs, Kyoto mechanism obligations, and technological developments in the solar and wind industries are pushing the country onto the right track. Setting up and achieving goals may need more time than planned, but it is clear that Turkey is becoming more aware of its natural conditions.

[photo credit: UweBKK]

Related Links :

Ministry of Energy and Natural Ressources (Enerji ve Tabi Kaynaklar Bakanlığı)
http://www.enerji.gov.tr

General Directorate of Electrical Power Ressources Survey (Elektril İşleri Etüt İdaresi Genel Müdürlüğü)
http://www.eie.gov.tr

EPDK (Enerji Piyasası Düzenleme Kurumu)
http://www.epdk.gov.tr

TEIAS (Türkiye Elektrik İletim A. Ş. Genel Müdürlüğü)
http://www.teias.gov.tr

Union of Chambers of Turkish engineers and architects, TMMOB
http://www.tmmob.org.tr/

Wind Power and Hydropower Plants Businessmen’s Association (Rüzgar Enerjisi ve Su Santralleri İşadamları Derneği)

http://www.ressiad.org.tr

The Chamber of Electrical Engineer (Dünya Enerji Konseyi Türk Milli Komitesi)

Related articles by Zemanta

Reblog this post [with Zemanta]

Turkey Is Getting Ready To Harvest Its Renewable Energy Potential.

When we talk about wind, solar and geothermal power, geographical conditions such as surface areas and sunny latitudes are very important. Turkey offers excellent conditions for all of these renewable energy sources. Its young population of 70 million – 61% are under the age of 35 – and its strategic location between Europe and the Middle East, add to Turkey’s potential for a leading green power nation.

As Turkey aims at taking its place among the top-ten biggest economies by 2050, an increase in its energy consumption is inevitable. Electricity demand has been growing with an annual rate of 6.5% since 2002, up to current levels of 198,000 GWh/y. Scenarios forecast a 6% growth rate until 2020, compared to growth rates of 1-3% in developed countries. However, Turkey’s growth of electricity supply barely matches its fast growth of demand. The country began experiencing shortages already, and power has become a more popular daily topic. Total installed capacity is at 42,000 MW, with foreign natural gas (48%), coal (29%) and hydro power (17%) providing the biggest shares of resources. So far, the share of renewable energy is close to 1% of the total installed capacity.

In 2006, the government passed a set of incentives to stimulate the renewable energy sector. The efforts successfully resulted in substantial increases in the wind power capacity to 433 MW in 2009 from 50 MW levels in 2006. From 2007 to 2008, the capacity almost quadrupled. Currently, there is additional 450 MW construction to be completed by the end of 2009. Roof-top solar panels, which are commonly used for water heating in the Mediterranean region, produce energy equivalent to almost 4800 GWh/y, however installed photovoltaic capacity is only 2 MW. Turkey is the 5th in the World in operating geothermal energy applications with equivalence of 1380 MW capacity used in direct district heating and tourism industry. Geothermal power production capacity is currently 30 MW. So far, only modest steps have been taken since the government has not set clear targets or competitive incentives on new technologies yet.

According to studies, Turkey has around 48,000 MW of wind power potential (see REPA) with speeds higher than 7 m/s. The geothermal energy potential of the country is around 31,500 MW -one of the highest in Europe- which could be used for both heating and electricity production purposes. As Turkey is the second sunniest country in Europe after Spain, it can draw 380,000 GWh/y of solar energy – almost double the total electricity consumption of the country in 2008.

Turkey has signed the UNFCCC Kyoto Protocol this year, and the country is going to be assigned a reduction of greenhouse gases for the post-2012-phase, which will eventually turn into clearer targets in its renewable energy sector.

It is expected that the Parliamentary General Assembly will pass an amendment to “Renewable Energy Resources Law 4628″ in July, effectively setting a purchase price, or feed-in-tariff, for renewable energy. While the renewable energy can be sold to the public at rates shown in Graph-1, the prices are still not competitive enough to make solar favorable against natural gas. The tariffs for photovoltaics are set at EUR 0.25/kWh only for the first 10 years of operation, and then decrease to EUR 0.20 for the next 10 years.

While rates in other European countries are much more attractive (see Graph-2), particularly in countries like Greece and Italy trying to catch up to their western neighbors, it is the first serious step towards setting a long-term purchase price incentive for renewable energy producers. The mechanism is expected to increase developments in the Turkish renewable energy sector, and investors are already beginning to position themselves in the market.

There are still many unclear issues regarding regulations and their execution. While this problem is not unique to Turkey, the country’s transmission grid needs extensive upgrades. Despite this and other much needed developments, EU directives, feed-in-tariffs, Kyoto mechanism obligations, and technological developments in the solar and wind industries are pushing the country onto the right track. Setting up and achieving goals may need more time than planned, but it is clear that Turkey is becoming more aware of its natural conditions.

[photo credit: UweBKK]

Related Links :

Ministry of Energy and Natural Ressources (Enerji ve Tabi Kaynaklar Bakanlığı)
http://www.enerji.gov.tr

General Directorate of Electrical Power Ressources Survey (Elektril İşleri Etüt İdaresi Genel Müdürlüğü)
http://www.eie.gov.tr

EPDK (Enerji Piyasası Düzenleme Kurumu)
http://www.epdk.gov.tr

TEIAS (Türkiye Elektrik İletim A. Ş. Genel Müdürlüğü)
http://www.teias.gov.tr

Union of Chambers of Turkish engineers and architects, TMMOB
http://www.tmmob.org.tr/

Wind Power and Hydropower Plants Businessmen’s Association (Rüzgar Enerjisi ve Su Santralleri İşadamları Derneği)

http://www.ressiad.org.tr

The Chamber of Electrical Engineer (Dünya Enerji Konseyi Türk Milli Komitesi)

Related articles by Zemanta

Reblog this post [with Zemanta]

The economics of solar power

Don’t be fooled by technological uncertainty and the continued importance of regulation; solar will become more economically attractive.

June 2008 • Peter Lorenz, Dickon Pinner, and Thomas Seitz

A new era for solar power is approaching. Long derided as uneconomic, it is gaining ground as technologies improve and the cost of traditional energy sources rises. Within three to seven years, unsubsidized solar power could cost no more to end customers in many markets, such as California and Italy, than electricity generated by fossil fuels or by renewable alternatives to solar. By 2020, global installed solar capacity could be 20 to 40 times its level today.

But make no mistake, the sector is still in its infancy. Even if all of the forecast growth occurs, solar energy will represent only about 3 to 6 percent of installed electricity generation capacity, or 1.5 to 3 percent of output in 2020. While solar power can certainly help to satisfy the desire for more electricity and lower carbon emissions, it is just one piece of the puzzle.

What’s more, solar power faces challenges that are common in emerging sectors. Several technologies are competing to win the lowest-cost laurels, and it’s not yet clear which is going to win. Rapid growth has created shortages and high margins for early players, such as the silicon refiners Dow Corning, REC Solar, and Wacker, as well as the component manufacturers First Solar, Q-Cells, and SunPower. Fueled by ever-increasing flows of new equity from venture capital and private-equity firms—$3.2 billion in 2007—innovative new competitors are entering the sector, and with them the potential for excess supply, falling prices, and deteriorating financial performance for some time.

With competition heating up, the companies building the equipment that generates solar power must relentlessly cut their costs by improving the processes they use to manufacture solar cells, investing in research and development, and moving production to low-cost countries. At the same time, they must secure access to raw materials without tying themselves to the wrong technology or partner.

The evolution of technology looms large for utilities as well. If they hesitate to undertake large long-term investments until the dust clears, they risk losing customers to players such as panel installers willing to put up and finance solar units on the roofs of buildings in return for a share of the savings the owners enjoy. As always in the utility sector, it will be essential to deploy smart regulatory strategies, which in some regions might mean including solar investments in the capital base used to set rates for consumers. Government policies will also continue to influence the sector’s development heavily. Deciding when and how to phase out subsidies will be critical for creating a vibrant, cost-competitive sector.

Even in the most favorable regions, solar power is still a few years away from true “grid parity”—the point when the price of solar electricity is on par with that of conventional sources of electricity on the power grid. The time frame is considerably longer in countries such as China and India, whose electricity needs will require large amounts of new generating capacity in the years ahead and whose cheap power from coal makes grid parity a more elusive goal.

The birth of a sector

The solar sector includes a diverse set of players, including the manufacturers of the silicon wafers, panels, and components used to generate much of today’s solar power, as well as the installers who put small-scale units on individual roofs, utilities and other operators setting up enormous solar collection systems in deserts, and start-up companies striving for breakthroughs such as lower-cost thin-film technologies. All are operating in a dynamic environment in which long-held assumptions—subsidies, the primacy of incumbents, and the predominance of silicon-wafer-based technology—are being eroded.

Beyond subsidies

Government subsidies have played a prominent role in the growth of solar power. Producers of renewable energy in the United States receive tax credits, for example, and Germany requires electricity distributors to pay above-market rates for electricity generated from renewable sources. Without such policies, the high cost of generating solar power would prevent it from competing with electricity from traditional fossil-fuel sources in most regions.

But the sector’s economics are changing. Over the last two decades, the cost of manufacturing and installing a photovoltaic solar-power system has decreased by about 20 percent with every doubling of installed capacity. The cost of generating electricity from conventional sources, by contrast, has been rising along with the price of natural gas, which heavily influences electricity prices in regions that have large numbers of gas-fired power plants. These regions include California, the Northeast, and Texas (in the United States), as well as Italy, Japan, and Spain.

As a result, solar power has been creeping toward cost competitiveness in some areas. California, for example, combines abundant sunshine with retail electricity prices that, partly as a result of the state’s policies, are among the highest in the United States—up to 36 cents per kilowatt-hour for residential users.1 Unsubsidized solar power costs 36 cents per kilowatt-hour. Support from the California Solar Initiative2 cuts the price customers pay to 27 cents. Rising natural-gas prices, state regulations aiming to limit greenhouse gas emissions, and the need to build more power plants to keep up with growing demand could push the cost of conventional electricity higher.

During the next three to seven years, solar energy’s unsubsidized cost to end customers should equal the cost of conventional electricity in parts of the United States (California and the Southwest) and in Italy, Japan, and Spain. These markets have in common relatively strong solar radiation (or insolation), high electricity prices, and supportive regulatory regimes that stimulate the solar-capacity growth needed to drive further cost reductions (Exhibit 1). These conditions set in motion a virtuous cycle: growing demand for solar power creates more opportunities for companies to reduce production costs by improving solar-cell designs and manufacturing processes, to introduce new solar technologies, and to enjoy lower prices from raw-material and component suppliers competing for market share.

We forecast global solar demand by estimating the payback period for customers in different countries and regions. (Payback estimates rest on projected system costs and power prices, as well as local sunlight and incentive schemes.) Our analysis suggests that by 2020 at least ten regions with strong sunlight will have reached grid parity, with the price of solar electricity falling from upward of 30 cents per kilowatt-hour to 12, or even less than 10, cents. From now until 2020, installed global solar capacity will grow by roughly 30 to 35 percent a year, from 10 gigawatts today to about 200 to 400 gigawatts3 (Exhibit 2), requiring capital investments of more than $500 billion. Exactly where within this range actual installed capacity falls will depend upon the evolution of solar costs, carbon costs, and power prices (which in turn are heavily influenced by natural gas prices). Even though this volume represents only 1.5 to 3 percent of global electricity output, the roughly 20 to 40 new gigawatts a year of installed solar capacity would provide about 10 to 20 percent of annual new power capacity over that period. This level of installed solar capacity would abate some 125 to 250 megatons of carbon dioxide—roughly 0.3 to 0.6 percent of global emissions in 2020.

Evolving technologies

Our demand and capacity forecasts assume continued improvement in solar-cell designs and materials but neither a radical breakthrough nor the emergence of a dominant technology. At present, three technologies—silicon-wafer-based and thin-film photovoltaics and concentrated solar thermal power—are competing for cost leadership. Each has its advantages for certain applications, but none holds the overall crown. Major innovations and shifts in the relative cost competitiveness of these technologies could occur.

Companies that use either of the current photovoltaic technologies, which generate electricity directly from light, are striving to reduce costs by making their systems more efficient. In power conversion, efficiency means the amount of electrical power generated by the solar radiation striking the surface of a photovoltaic cell in a given period of time. For each unit of power generated, more efficient systems require less raw material and a smaller solar-collection surface area, weigh less, and are cheaper to transport and install.

Silicon-wafer-based photovoltaics. Although 90 percent of installed solar capacity uses silicon-wafer-based photovoltaic technology, it faces two challenges that could create openings for competing approaches. For one thing, though it is well suited to space-constrained rooftop applications (because it is roughly twice as efficient as current thin-film photovoltaic technologies), the solar panels and their installation are costly: larger quantities of photovoltaic material (in this case, silicon) are required to make the panels than are to make thin-film photovoltaic solar cells.4 Second, companies are starting to approach the theoretical efficiency limit—31 percent—of a single-junction silicon-wafer-based photovoltaic cell; several now achieve efficiencies in the 20 to 23 percent range. To be sure, there is still room for improvement before the limit is reached, and clever engineering techniques (such as concentrating sunlight on solar cells or adding a number of junctions made of different materials to absorb a larger part of the light spectrum more efficiently) could extend it, though many of these ideas increase production costs.

Thin-film photovoltaics. The other important photovoltaic approach, thin-film technology,5 has been available for many years but only recently proved that it can reach sufficiently high efficiency levels (about 10 percent) at commercial production volumes. Thin film trades off lower efficiencies against a significantly lower use of materials—about 1 to 5 percent of the amount needed for silicon-wafer-based photovoltaics. The result is a cost structure roughly half that of wafer-based silicon. This technology also has significant headroom to extend the cost gap in the long term.

But challenges abound. The lower efficiency of thin-film modules6 means that they are currently best suited to large field installations and to large, flat rooftops. Furthermore, the longevity of these modules is uncertain; silicon-wafer-based photovoltaics, by contrast, maintain their output at high levels for more than 25 years. Of the most promising thin-film technologies, only one—cadmium telluride—has truly reached commercial scale, and some experts worry about the toxicity of cadmium and the availability of tellurium. A final complicating factor is that a new generation of nanoscale thin-film technologies now on the horizon could significantly increase the efficiency and reduce the cost of producing solar power.

Concentrated solar thermal power. The third major solar technology, concentrated solar thermal power,7 is the cheapest available option today but has two limitations. Photovoltaic systems can be installed close to customers, thereby reducing the expense of transmitting and distributing electricity. But concentrated solar thermal power systems require almost perfect solar conditions and vast quantities of open space, both often available only at a great distance from customers. In addition, the ability of concentrated solar thermal power to cut costs further may be limited, because it relies mostly on conventional devices such as pipes and reflectors, whose costs will probably fall less significantly than those of the materials used in semiconductor-based photovoltaics. Nonetheless, several European utilities now regard concentrated solar thermal power as the solar technology of choice.

The road ahead

The extent and speed of this emerging sector’s growth will depend on its ability to keep driving down the cost of solar power. No single player or set of players can make that happen on its own.

• The necessary technological breakthroughs will come from solar-component manufacturers, but rapid progress depends on robustly growing demand from end users, to whom many manufacturers have only limited access.

• Utilities have strong relationships with residential, commercial, and industrial customers and understand the economics of serving them. But these companies will have difficulty driving the penetration of solar power unless they have a much clearer sense of the cost potential of different solar technologies.

• In some regions, regulators can accelerate the move toward grid parity, as they did in California and Germany, but they can’t reduce the real cost of solar power. Poor regulation might even slow the fall in prices.

Although these considerations make it difficult to predict outcomes and to prescribe strategies, certain economic principles do apply.

Solar-component manufacturers

The fundamentals are clear for photovoltaic-component manufacturers that hope to remain competitive: there’s no escaping significant R&D investments to stimulate continued efficiency improvements, as well as operational excellence to drive down manufacturing costs. Furthermore, in view of the technological uncertainty, established silicon-wafer-based companies should hedge their bets by investing in advanced thin-film technologies.

Some manufacturers have considered establishing partnerships or vertically integrating—approaches that could give them access to supplies, customers, and financing but might also lock them into the wrong technology. To make the right trade-offs, the manufacturers of components for silicon-wafer-based and thin-film technologies should focus on fundamentals, such as manufacturing costs, efficiency improvements, and the movement of prices for raw materials.

Raw materials. Polysilicon is the main raw material for silicon-wafer-based solar-cell manufacturers, which now consume more of it than the semiconductor industry does. Over the last two years, shortages and price spikes have been the result.

High margins have encouraged incumbents to add capacity and have attracted new entrants. Many observers have therefore been predicting that global polysilicon production capacity will at least triple from 2005 to 2010, while our forecasts indicate that demand for the material will only double during the same period. This mismatch suggests that the spot price of polysilicon could drop from over $200 a kilogram to levels previously seen in the semiconductor industry—as little as $30 to $50. Of course, if global demand for silicon-based modules surged, or if announced capacity additions did not materialize or were delayed (due to cancelled projects, quality issues, or the sorts of engineering and construction delays that are currently prevalent in many other capital intensive industries), the price effect might be dampened significantly. Industry participants should therefore screen supply and demand developments continuously.

Production process technology. The way companies manufacture solar cells has the largest impact on the cells’ efficiency and their cost. Many incumbents have invested heavily in developing proprietary manufacturing processes. Some start-up cell manufacturers, by contrast, buy entire manufacturing lines from equipment companies such as Applied Materials.

Cell manufacturers are valuable partners for equipment companies hoping to tap into the growth of the solar sector. The equipment companies need formal partnerships that will allow them to retain ownership of the intellectual property associated with their manufacturing processes—a difficult trick that these vendors tried (and failed) to pull off in the semiconductor sector. The same thing could happen again unless equipment providers can figure out how to make their offerings extremely cost competitive and difficult for operators to imitate or enhance.

Producing in low-cost regions. Many leading silicon-wafer-based photovoltaic solar companies are located in high-wage countries. These manufacturers produce cells that are typically more efficient than those produced in lower-wage countries; for example, many German and US cells achieve an efficiency of 20 percent or more, compared with 15 to 16 percent for Chinese ones. Yet countries like China and India will inevitably gain an overall cost advantage by developing the skills needed to produce more efficient cells. Companies in regions with high labor costs should therefore constantly monitor the benefits and risks of locating their next plant in an area that offers lower-cost labor and generous subsidies.

Utilities

Although the distributed nature of solar power might seem to clash with the utilities’ business model of centralized electricity generation, these companies do have assets in the solar era, starting with strong customer relationships. They are also in a good position to integrate electricity generated at large numbers of different locations (such as rooftops) into the existing network. Many utilities could use their advanced metering infrastructure to calculate the full value of solar power during peak times. One way of leveraging these assets would be to form partnerships with component manufacturers. Building profitable partnerships will require utilities to develop new skills, such as installing and managing solar-generation capacity, as well as deciding which solar technologies best suit their service territories.

The technology that currently seems most attractive for utilities is concentrated solar thermal power, because it involves centralized electricity generation—much as traditional coal, nuclear, and hydroelectric facilities do—and is today’s low-cost solar champion. Its long-term cost prospects, though, are less favorable than those of some emerging photovoltaic technologies, so choosing it now is in effect a strategic bet on how quickly relative costs and local subsidy environments will change.

While the natural tendency might be to postpone investments until the technology picture becomes clearer, sitting on the sidelines poses risks for the utilities. As the cost of solar energy decreases, the growing number of companies that will probably enter the business of installing solar equipment could cut off some utilities from their customers. Installers buy solar panels, mount them in homes and businesses, and then lease them in return for a stream of payments lower than prevailing electricity rates but still high enough to earn a healthy return on the panel investment. Since people who now pay the highest electricity rates would be the most likely to switch, utilities would lose their most valuable customers.

One way of coping would be to forge relationships with solar-cell and -module manufacturers that could help utilities claim a portion of this emerging business while they gain experience integrating distributed generating capacity into the grid. It should be in their interest to strike up such partnerships quickly, before disintermediation reduces their attractiveness as partners, since savvy manufacturers will pit them against installers in a quest for the most favorable financial arrangements.

Another approach for the utilities involves regulatory strategy—for example, they could try to persuade regulators to add solar investments to their rate base (the expenses and capital investments that regulators use to calculate fair retail electricity prices). Although such a readjustment would raise electricity rates, utilities could argue that the long-term benefits would be significant: increasing their reserve margins while making conventional power generation investments unnecessary, dampening future rate increases from rising fuel prices, meeting environmental targets, and accelerating the decline in solar-power costs. This approach yields a fixed return on capital that might ultimately be lower than what would be possible if utilities bet successfully on the right technologies, but it also mitigates investment risk.

Governments and regulators

The decisions of regulators will affect not only utilities but also the entire solar sector. During the march to grid parity, well-understood and targeted subsidies will be critical to build the confidence of investors and attract capital. The impact of government policies in rapidly growing emerging markets such as China and India will be particularly important for the pace of the sector’s growth. Our base-case forecasts do not include aggressive growth in these markets. But if China installed rooftop solar panels on, say, 13 percent of all new construction in 2020, the country would add 15 gigawatts of solar capacity a year, about 40 percent of the world’s annual increase. Similarly, government policies encouraging the use of electric vehicles may also accelerate the growth of solar demand.

While the optimal regulations for different countries will vary considerably, all governments should focus on a few major factors.

* Clarify objectives. Before establishing policies, regulators must decide whether they want to increase energy security, lower carbon emissions, build a high-tech manufacturing cluster, create jobs for installers, or any combination of these goals. Once regulators have identified and prioritized them, appropriate policies can be developed to stimulate specific parts of the sector.
* Reward production, not capacity. Subsidizing capacity rewards all solar-power installations at the same rate, regardless of their cost-efficiency. Production-based programs, which reward companies only for generating electricity, create incentives to reduce costs and to focus initially on attractive areas with high levels of sunlight.
* Phase out subsidies carefully. In virtually every region of the world, solar subsidies are still crucial; in 2005, when they expired in Japan, capacity growth declined there significantly. But since solar power could eventually be cost competitive with conventional sources, regulators must adjust incentive structures over time and phase them out when grid parity is reached.

Solar energy is becoming more economically attractive. Component manufacturers, utilities, and regulators are making decisions now that will determine the scale, structure, and performance of this new sector. Technological uncertainty makes the choices difficult, but the opportunities—for companies to profit and for the world to become less dependent on fossil fuels—are significant.

About the Authors
Peter Lorenz is an associate principal in McKinsey’s Houston office, where Thomas Seitz is a director; Dickon Pinner is a principal in the San Francisco office.

The authors wish to acknowledge the contributions of their colleagues Joel Conkling, Stefan Heck, and Christer Tryggestad.

Notes
1. Residential retail electricity prices in California increase with the end customer’s usage.

2. The California Solar Initiative provides $3.1 billion of subsidies to install 3 gigawatts, or 3 billion watts, of capacity by 2017.

3. One gigawatt = one billion watts. As a point of reference, the capacity of a typical coal plant is about 0.6 to 1.0 gigawatts.

4. Silicon absorbs light less well than the materials currently used to make thin-film photovoltaic solar cells, so they must be thicker to absorb the same amount of light.

5. Leaving aside nanoscale materials and technologies, there are currently four promising thin-film technologies: cadmium telluride, copper indium gallium diselenide, amorphous silicon, and thin-film polysilicon.

6. A module is a collection of cells that have been connected together to generate higher current and voltages.

7. Photovoltaic systems use semiconductor materials to convert light directly into electricity. Concentrated solar thermal power uses mirrors to reflect sunlight onto fluids, which heat up and then pass through a heat exchanger to generate steam and drive a turbine. Such technologies include parabolic troughs, power towers, linear Fresnel reflectors, dish Stirling systems, and solar chimneys.

This article has been updated to reflect factual corrections provided by the authors.

© Copyright 1992-2008 McKinsey & Company

PROFESSIONAL PROFILE

BUSINESS CONSULTANT, INTERNATIONAL EXPERT


  • Projects engineering : preparation, implementation, monitoring, follow-up and evaluation of projects.

  • Assistance in searching for partners, setting up consortia, facilitate business cooperation, subcontracting/outsourcing opportunities and twinning strategies.

  • Capital raising through financial institutions and funds.
  • Bid management: drafting terms of reference, work-plans, tender documents and policy papers according EU standards and procedures.
  • Strategy and planning services: benchmarking, business and economic intelligence, due diligence.

FEW WORDS ABOUT ME

If I have to describe my career path in one word, I would say « act(ed) local, became global ».

Commitment, resilience, and a strong entrepreneurial spirit are some of my USP which propelled me from a business consultant in Tunisia (North Africa) to an International Expert in Paris.

After spending 4 years with a holding group (42 companies, marketing department), I decided to launch my own business and my first step was the publication of a comprehensive Tunisian investment promotion guide sponsored by CITIBANK NA and TOTAL addressing international investors.

Thanks to the success of this publication sold all over the world, I have been asked by several IFI’s to make sectoral research on various industries to promote trade and investments such as textile and apparel, agroindustries and food processing, construction and engineering, financial market development issues, market access development within the EU free trade agreement and south-south integration between Mediterranean countries, investment incentives for SME’s, vocational training opportunities, tourism market, industrial clusters…

These opportunities gave me a broad based experience on development issues and a transversal approach which helped me expand my expertise to the Middle East and North Africa region within the Euromediterranean Partnership launched by the European Commission.

SPECIFIC SKILLS

  • Extensive knowledge of best practices in relation to investment promotion, investment climate improvement, and economic development best practices.
  • Familiarity with management of EC projects and related procurement and funding procedures.
  • Expertise in the preparation, implementation, monitoring, follow-up and evaluation of projects/project cycles; and ability in writing terms of reference, work-plans, tender documents and policy papers according EU standards and procedures.
  • Proficiency in market research and analysis with extensive experience in economic issues and editorial content (newsletters, web content, press briefings,).
  • Excellent skills in communication, fundraising and lobbying. Strong marketing vision and strategy.
  • Good network of personal and professional contacts.
  • Proven multi-tasking capabilities and ability to independently plan, organize and manage special projects and work efficiently under deadlines.
  • Vision in spotting market trends/dynamics and uncovering new business opportunities. Entrepreneurial spirit. Innovative problem-solver.
  • Capacity to work in teams including in an international & multi-cultural environment.

WHAT ELSE?

Polyglot in 4 languages (English, French, Arabic and Italian). Understanding spanish.

Lived in Tunisia, London, Paris. Globe-trotter.

Right-brained, ambitious, constantly over-edging the limits to adapt to client needs. Technophobe.

PROFESSIONAL PROFILE

BUSINESS CONSULTANT, INTERNATIONAL EXPERT


  • Projects engineering : preparation, implementation, monitoring, follow-up and evaluation of projects.

  • Assistance in searching for partners, setting up consortia, facilitate business cooperation, subcontracting/outsourcing opportunities and twinning strategies.

  • Capital raising through financial institutions and funds.
  • Bid management: drafting terms of reference, work-plans, tender documents and policy papers according EU standards and procedures.
  • Strategy and planning services: benchmarking, business and economic intelligence, due diligence.

FEW WORDS ABOUT ME

If I have to describe my career path in one word, I would say « act(ed) local, became global ».

Commitment, resilience, and a strong entrepreneurial spirit are some of my USP which propelled me from a business consultant in Tunisia (North Africa) to an International Expert in Paris.

After spending 4 years with a holding group (42 companies, marketing department), I decided to launch my own business and my first step was the publication of a comprehensive Tunisian investment promotion guide sponsored by CITIBANK NA and TOTAL addressing international investors.

Thanks to the success of this publication sold all over the world, I have been asked by several IFI’s to make sectoral research on various industries to promote trade and investments such as textile and apparel, agroindustries and food processing, construction and engineering, financial market development issues, market access development within the EU free trade agreement and south-south integration between Mediterranean countries, investment incentives for SME’s, vocational training opportunities, tourism market, industrial clusters…

These opportunities gave me a broad based experience on development issues and a transversal approach which helped me expand my expertise to the Middle East and North Africa region within the Euromediterranean Partnership launched by the European Commission.

SPECIFIC SKILLS

  • Extensive knowledge of best practices in relation to investment promotion, investment climate improvement, and economic development best practices.
  • Familiarity with management of EC projects and related procurement and funding procedures.
  • Expertise in the preparation, implementation, monitoring, follow-up and evaluation of projects/project cycles; and ability in writing terms of reference, work-plans, tender documents and policy papers according EU standards and procedures.
  • Proficiency in market research and analysis with extensive experience in economic issues and editorial content (newsletters, web content, press briefings,).
  • Excellent skills in communication, fundraising and lobbying. Strong marketing vision and strategy.
  • Good network of personal and professional contacts.
  • Proven multi-tasking capabilities and ability to independently plan, organize and manage special projects and work efficiently under deadlines.
  • Vision in spotting market trends/dynamics and uncovering new business opportunities. Entrepreneurial spirit. Innovative problem-solver.
  • Capacity to work in teams including in an international & multi-cultural environment.

WHAT ELSE?

Polyglot in 4 languages (English, French, Arabic and Italian). Understanding spanish.

Lived in Tunisia, London, Paris. Globe-trotter.

Right-brained, ambitious, constantly over-edging the limits to adapt to client needs. Technophobe.